On the strongly generic undecidability of the halting problem

Alexander N. Rybalov
Omsk State University
rybalov@omskreg.ru

November 21, 2005
The halting problem (HP)

- Input: A Turing machine M

- Output:

 YES if M halts on $\delta(M)$

 NO if M does not halt on $\delta(M)$

here δ is some effective coding of Turing machines by binary strings

Question 1 Is there an algorithm deciding HP?

Theorem 1 (Classics) HP is algorithmically undecidable.
Generic-case version of the HP

- Input: "Almost every" Turing machine M

- Output:

 YES if M halts on $\delta(M)$

 NO if M does not halt on $\delta(M)$

Question 2 Is there an algorithm deciding HP for "almost all" inputs?

Question 3 What does it mean "almost all"?
Asymptotic density of sets of programs

- P is the set of all Turing machines
- P_n is the set of all n-state machines
- B is some set of Turing machines

Definition 1 *Asymptotic density of B is*

$$
\mu(B) = \lim_{n \to \infty} \frac{|B \cap P_n|}{|P_n|}.
$$
The number of all n-state programs

Working alphabet is $\Sigma = \{0, 1, \square\}$. Machine can move the head to left and to right cell of the tape. Every n-state program contains $3n$ rules of type

$$(q_i, a) \rightarrow (q_j, b, s),$$

for every state q_i, $i = 1, \ldots, n$ and every symbol $a \in \Sigma$. Here $a, b \in \Sigma$, $s \in \{L, R\}$ and q_j may be final state.

This follows that the number of all n-state programs is

$$|P_n| = (6(n + 1))^{3n}.$$
Generic sets of programs

Definition 2 A set B of programs is called

- **generic if** $\mu(B) = 1$

- **negligible if** $\mu(B) = 0$

- **strongly negligible if** there are constants $0 < \sigma < 1$ and $C > 0$ such that for every n
 \[
 \frac{|B \cap P_n|}{|P_n|} < C \sigma^n,
 \]
 i.e. the sequence of the proportion of all n-state programs in B exponentially fast converges to 0

- **strongly generic if** $P \setminus B$ is strongly negligible
Generic-case decidability and complexity of HP

Question 4 Is there a generic set of Turing machines on which the HP is decidable?

Theorem 2 (Hamkins, Miasnikov) There is a generic set of Turing machines B such that HP is polynomial time decidable on B.

Question 5 What about strongly generic sets on which HP is decidable?

Theorem 3 (Main result) There is no strongly generic set of Turing machines on which HP is decidable.
How do we prove undecidability of classical HP?

Suppose HP is decidable, then

\[\text{\textit{halt}}(x) = \begin{cases}
1, & \text{if } x = \delta(M) \text{ and } M(x) \downarrow, \\
0, & \text{if } x = \delta(M) \text{ and } M(x) \uparrow.
\end{cases} \]

is computable function on \(\delta(P) \). Then the ”diagonal” function

\[\text{\textit{diag}}(x) = \begin{cases}
\text{not def}, & \text{if } x = \delta(M) \text{ and } M(x) \downarrow, \\
0, & \text{if } x = \delta(M) \text{ and } M(x) \uparrow.
\end{cases} \]

is computable on \(\delta(P) \) too. But the machine \(M \) computing \(\text{\textit{diag}} \) makes an error on \(\delta(M) \):

if \(M(\delta(M)) \downarrow \Rightarrow \text{\textit{diag}}(\delta(M)) = 0 \Rightarrow M(\delta(M)) \uparrow. \)

if \(M(\delta(M)) \uparrow \Rightarrow \text{\textit{diag}}(\delta(M)) \) is not defined \(\Rightarrow M(\delta(M)) \downarrow. \)
How to prove undecidability of HP on any strongly generic set?

Let \(S \) be a strongly generic set of programs. Suppose HP is decidable on \(S \), then

\[
\text{halt}(x) = \begin{cases}
1, & \text{if } x = \delta(M) \text{ and } M(x) \downarrow, \\
0, & \text{if } x = \delta(M) \text{ and } M(x) \uparrow.
\end{cases}
\]

is computable function on \(\delta(S) \). Hence the function

\[
\text{diag}(x) = \begin{cases}
\text{not def}, & \text{if } x = \delta(M) \text{ and } M(x) \downarrow, \\
0, & \text{if } x = \delta(M) \text{ and } M(x) \uparrow.
\end{cases}
\]

is computable on \(\delta(S) \) and computed by some machine \(M \). To get a contradiction we must give \(M \) the input \(\delta(M) \).

Question 6 Should \(\delta(M) \) belong to \(\delta(S) \)? Should \(M \) be in \(S \)?
Lemma 1 For any computable function \(f \) the set \(C(f) \) of all machines computing \(f \) is not strongly negligible.

Idea of proof. \(M \) has \(k \) states and computes \(f \). \(M^* \) has \(n > k \) states and program with the same transition rules as in \(M \) for first \(k \) states and arbitrary rules for \(n - k \) other states:

- **fixed 3\(k \) rules**
 \[
 \begin{cases}
 (q_1, 0) \to \ldots, \\
 \ldots \\
 (q_k, \square) \to \ldots,
 \end{cases}
 \]

- **arbitrary 3\((n - k)\) rules**
 \[
 \begin{cases}
 (q_{k+1}, 0) \to \ldots, \\
 \ldots \\
 (q_n, \square) \to \ldots.
 \end{cases}
 \]

\(M^* \) computes \(f \). \(A \) is the set of all such \(M^* \).

\[
\frac{|C(f) \cap P_n|}{|P_n|} \geq \frac{|A \cap P_n|}{|P_n|} = \frac{(6(n + 1))^{3(n-k)}}{(6(n + 1))^{3n}} = \frac{1}{(6(n + 1))^{3k}}.
\]

So \(C(f) \) is not strongly negligible.
Returning to HP.

- $C(diag)$ is not strongly negligible

- $P \setminus S$ is strongly negligible.

\Rightarrow there is a machine M computing $diag$ such that $M \in S$. That is all that we need to end proof of main theorem.
The end. Thank you.